Worksheet 2-2. Computations of velocity and bankfull discharge using various methods (Rosgen, 2006b; Rosgen and Silvey, 2007).

Protrusion Height Options for the D_{84} Term in the Relative Roughness Relation (R/D ${ }_{84}$) - Estimation Method 1

For sand-bed channels: Measure 100 "protrusion heights" of sand dunes from the downstream side of feature to the top of
Option 1. feature. Substitute the D_{84} sand dune protrusion height in ft for the D_{84} term in method 1
Option 2. For boulder-dominated channels: Measure 100 "protrusion heights" of boulders on the sides from the

$$
-1
$$

For bedrock-dominated channels: Measure 100 "protrusion heights" of rock separations, steps, joints or uplifted surfaces
Option 3. above channel bed elevation. Substitute the D_{84} bedrock protrusion height in ft for the D_{84} term in method 1 .

[^0]Worksheet 2-2. Computations of velocity and bankfull discharge using various methods (Rosgen, 2006b; Rosgen and Silvey, 2007).

Protrusion Height Options for the D_{84} Term in the Relative Roughness Relation (R/D ${ }_{84}$) - Estimation Method 1

For sand-bed channels: Measure 100 "protrusion heights" of sand dunes from the downstream side of feature to the top of
Option 1. feature. Substitute the D_{84} sand dune protrusion height in ft for the D_{84} term in method 1
Option 2. For boulder-dominated channels: Measure 100 "protrusion heights" of boulders on the sides from the

$$
-1
$$

For bedrock-dominated channels: Measure 100 "protrusion heights" of rock separations, steps, joints or uplifted surfaces
Option 3. above channel bed elevation. Substitute the D_{84} bedrock protrusion height in ft for the D_{84} term in method 1.

[^1]Worksheet 2-2. Computations of velocity and bankfull discharge using various methods (Rosgen, 2006b; Rosgen and Silvey, 2007).

Bankfull VELOCITY \& DISCHARGE Estimates								
Stream:	Blanchard River			Location: XS5 (Centennial Park)				
Date:	7/1/2020 Stre	Stream Type:	C4	Valley Type:		C-AL-FD		
Observers:	J. Ricketts, J. Moyer, N. Uhl			HUC:		HUC: 4100008		
INPUT VARIABLES				OUTPUT VARIABLES				
Bankfull Riffle Cross-Sectional AREA		737.57	$\mathrm{A}_{\mathrm{bkf}}$ (ft^{2})	Bankfull Riffle Mean DEPTH			5.44	$\begin{aligned} & \hline \mathbf{d}_{\mathrm{bkf}} \\ & \text { (ft) } \\ & \hline \hline \end{aligned}$
Bankfull Riffle WIDTH		135.54	$\begin{aligned} & \hline \hline \mathbf{W}_{\text {bkf }} \\ & (\mathrm{ft}) \\ & \hline \hline \end{aligned}$	Wetted PERMIMETER$\sim\left(2^{*} d_{\mathrm{bkf}}\right)+W_{\mathrm{bkf}}$			137.85	$\begin{aligned} & \hline \begin{array}{l} \mathbf{W}_{\mathrm{p}} \\ (\mathrm{ft}) \end{array} \\ & \hline \end{aligned}$
D_{84} at Riffle		171.33	Dia. (mm)	$D_{84}(\mathrm{~mm}) / 304.8$			0.56	D_{84} (ft)
Bankfull SLOPE		0.0006	$\begin{aligned} & \mathbf{S}_{\mathbf{b k f}} \\ & (\mathrm{ft} / \mathrm{ft}) \\ & \hline \end{aligned}$	Hydraulic RADIUS$\mathrm{A}_{\mathrm{bkf}} / \mathrm{W}_{\mathrm{p}}$			5.35	$\begin{aligned} & \hline \mathbf{R} \\ & \text { (ft) } \\ & \hline \end{aligned}$
Gravitational Acceleration		32.2	$\begin{gathered} \mathrm{g} \\ \left(\mathrm{ft} / \mathrm{sec}^{2}\right) \\ \hline \end{gathered}$	Relative Roughness$\mathrm{R}(\mathrm{ft}) / D_{84}(\mathrm{ft})$			9.52	$\mathrm{R} / \mathrm{D}_{84}$
Drainage Area		274.0	$\begin{gathered} \text { DA } \\ \left(\mathrm{mi}^{2}\right) \end{gathered}$	Shear Velocity$\mathrm{u}^{*}=(\mathrm{gRS})^{1 / 2}$			0.308	$\begin{gathered} \hline \hline \mathbf{u}^{*} \\ (\mathrm{t} / \mathrm{sec}) \end{gathered}$
ESTIMATION METHODS					Bankfull VELOCITY		BankfullDISCHARGE	
$\begin{gathered}\text { 1. Friction Relative } \\ \text { Factor }\end{gathered} \begin{gathered}\text { Roughness }\end{gathered} \quad u=\left[2.83+5.66 * \log \left\{R / D_{84}\right\}\right] u^{*}$					2.58	$\mathrm{ft} / \mathrm{sec}$	1900.05	cfs
2. Roughness Coefficient: a) Manning's n from Friction Factor / RelativeRoughness (Figs. 2-18, 2-19) $\quad u=1.49 * R^{2 / 3} * S^{1 / 2} / n \quad n=0.033$					3.23	$\mathrm{ft} / \mathrm{sec}$	2383.83	cfs
2. Roughness Coefficient: $u=1.49 * R^{2 / 3 *} S^{1 / 2} / n$ b) Manning's n from Stream Type (Fig. 2-20) $n=0.019$					5.61	$\mathrm{ft} / \mathrm{sec}$	4139.98	cfs
					6.20	$\mathrm{ft} / \mathrm{sec}$	4572.93	cfs
3. Other Methods (Hey, Darcy-Weisbach, Chezy C, etc.)					-	$\mathrm{ft} / \mathrm{sec}$	-	cfs
3. Other Methods (Hey, Darcy-Weisbach, Chezy C, etc.)					-	$\mathrm{ft} / \mathrm{sec}$	-	cfs
4. Continuity Equations: a) Regional Curves u=Q/A Return Period for Bankfull Discharge$\mathbf{Q}=$$\square$				year		$\mathrm{ft} / \mathrm{sec}$	-	cfs
4. Continuity Equations: b) US		Gage Dat	$u=Q / A$		3.24	$\mathrm{ft} / \mathrm{sec}$	2391.00	cfs

Protrusion Height Options for the D_{84} Term in the Relative Roughness Relation (R/D ${ }_{84}$) - Estimation Method 1

For sand-bed channels: Measure 100 "protrusion heights" of sand dunes from the downstream side of feature to the top of
Option 1. feature. Substitute the D_{84} sand dune protrusion height in ft for the D_{84} term in method 1
Option 2. top of the rock on that side. Substitute the D_{84} boulder protrusion height in ft for the D_{84} term in method 1 .

$$
0
$$

For bedrock-dominated channels: Measure 100 "protrusion heights" of rock separations, steps, joints or uplifted surfaces
Option 3. above channel bed elevation. Substitute the D_{84} bedrock protrusion height in ft for the D_{84} term in method 1.

[^2]
[^0]: Option 4. For log-influenced channels: Measure "protrustion heights" proportionate to channel width of log diameters

[^1]: Option 4. For log-influenced channels: Measure "protrustion heights" proportionate to channel width of log diameters

[^2]: Option 4. For log-influenced channels: Measure "protrustion heights" proportionate to channel width of log diameters

